UNANNIY

s oa W o v = ) d
amln‘samm&'umaf;mimﬁaaﬁmunaamnmmas

Path Integral for a Semi-Harmonic Oscillator
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Abstract
The propagator for a semi-harmonic oscillator(half-space harmonic oscillator) is evaluated exactly using the
application of image-point method to path integral theory, we find that the propagator can be written in an analytical

form :

=i, X, TR, X,

1/2 .
mao imw : :
K(b,a)m(————) X exp(—(xj +x§)coscoT) g Mol _ ghsinal

27k sin wT 2hsin T

where T =1 s — f, From the propagator, the wave functions and the possible encrgy levels are derived. We cbtain

the wave functions :

w ()= Ae ™ P H ([m2x), n=1353,.,
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where the normalization constant :

1
T 2

1/2
ma
ﬂh L)

1/2

here " (x) is Hermite polynomial of ordzr n, and we obtain the energy level :

E ={(n+1/Qhw, n=135,.. .

If we do not consider the quantum number n, the mathematical form of our results are the same as that of an harmonic

oscillator,

INTRODUCTION

In 1948, Feynman proposed a new approach to

quantum mechanics which provides the propagator of a -

particle as a path integral over all possible histories of the
system(Feynman and Hibbs, 1963). Since then the path
integral approach has attracted much attention and has
proven useful in many areas of physics. A strange fact is
that Feynman's theory has been powerless in solving some
problems such as an electron in a Coulomb potential, an
infinite potential barrier, and an infinite square well, etc.
Historically, in 1981, Goodman proposed an image-point
method, after applying this method to path integral of
an infinite potential barrier problem he obtained the
propagator of a particle under this potential. Here we will
show how to apply the image-point method to path

integral of a semi-harmonic oscillator.

METHODOLOGY
In quantum mechanics, the dynamical information
of a quantum mechanical system is contained in the
wave function. It is a function that determines the wave
associated with a particle. In practice we can obtain this

wave function by solving Schrodinger’s equation. In

Schrodinger’s picture, the evolution of a wave function is

determined by the equation (Messiah, 1961)

@)=V ) M
where U/(1,¢") is the time evolution operator. If the

Hamiltonian operator of the system is not an explicit

function of time then the evolution operator is of the

form

U@,t)y= cxp{-— %(t" . t’)H } 2)

In the configuration representation, Eq.(1) becomes

(& lv @)

= [ (Fpe.n ) Elwends, @
where we use the normalization condition
[ |#)z s =1. @

We can writes Eq.(3) as
w0 = [ KE LA OWE P, ()

where

K@%, =(Z|U0)

=(®,0(%.0)

2)

(6}
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and is called the propagator or probability amplitude of a
particle going from X' at time ¢ to ¥" at time ¢”.
According to Feynman’s ideas there are infinitely
many paths that a particle can travel going from ¥"at £'to
x"at {”. The amplitude is the sum of the contribution from
each path i.e.
KE.%8,0= Y

over all paths
from X' to %°

PLE()] - Ky

The contribution of a path has a phase proportional

to the action ‘
O[X (D] = const.e* ¥ , (8)

where the action §' = f L(%,%)dt and the

Lagrangian L(ic',fc) = %mfz -V(x).

On a polygonal basis, the propagator (6) can be
written as
K(f”,t”;f’,t') =

}Viﬂ(thz‘g Twu H f{ii[ﬁ(i‘ )

&0 m

—eVGE) | xdix,. dxy . ©)

Feynman wrote this sum over paths in a less
restrictive notation as

an oy & L
K" x' = J: et

“oEE) ao

which he called “a path integral”. In addition, when the
energy spectrum of a particle is discrete, the propagator of

Eq.(6) can be written in a form
iE
s ALY

K@, 058,00 = Y w,wi@e a0
and for a continuous spectrum Eq.(11) becomes
K" %,
= PECK) .
N L
= [y, WwiG)e k. (12)
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From Eq.(11} and (12) we realize that the
propagator contains information both eigenstates and
energy levels of a particle in quantum mechanical systern,
However, in real practice Eq.(9) is too complicate to
perform. To simplify the path integral for handling,
Feynman introduced some additional mathematical
techniques which help us to sum over paths in some
certain situation, by representing any possible path %(t)
by the classical path xd( t) and the deviation from the
classical path y(), ie x(t) = xd(t) + yft) then the
propagator can be written as

K@ 1%,1) = F(".') AT )
where F'(¢",t") and S el (X", X") are the pre-factor and
the clagsical action respectively. However, for a quadratic
Lagrangian, van Vleck(1978) and Pauli(1952) had
verified that F'(#",#") can be evaluated exactly by using
the formula

;‘ az 1/2
"oy — A Ly (14
F(@",t) de{[zﬁh}aiﬁ,&(x,x)} (14)

COMPUTATION PROCEDURE
The Infinite Potential Barrier
The infinite potential barrier is one of the simplest
unbounded-state problem in wave mechanics; it is usually
one of the first example given in any introductory
quantum mechanics course. The problem is to solve for
the motion in one dimension of a particle under the

influence of the potential

w for x<0

Yo {0 for x>0. . a3

According to Goodman’s ideas for the infinite
potential barrier, there are two classical paths (see Fig. 1).

The first is that of a free particle, while the second is that

of a particle that bounces off the wall on it way from
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(x',#") to (x",1"). Geometrically, this second path can
be constructed by first reflecting (x",2") about the line
x = 0, then constructing the free-particle path x(f) from
(x',#') to this image point {—x",#"} and finally reflecting
the path back to (x',2") so that x(#) > 0 everywhere.

(x"t7

g

Figure 1 : Two classical paths connecting and and their

corresponding image points.

By applying the image-point method to the path
integral approach, the propagator of the infinite potential

barrier can be written as
.3 s ¥
CEUERY

=(x" 2, (=20,

_ m 172 | oxp I.m(x.n - xr)2
it — ¢ 2h(t"— 1)
_exp[im(_x"~xf)2 J] (16)

280" 1"

where the subscript F denote the propagator for a free

particle. The phase factor -1 in the second term of the
tight of (16} can be thought of arising from the bound end
reflection of the wave function at the barrier.
Momentum Eigenstates and Possible Allowed Energy
Levels of an Infinite Potential Barrier

We now examine the momentum eigenstates

and energy levels of an infinite potential barrier from the

propagator of Eq.(16). By using the formula {Gradshtcyn
and Ryzhik, 1965)

fe—axz-i-ibxdx — #ﬁe—bzﬂa, (17)
® a

we can transform the exponential faciors of Eq.(16) into
the integral form :

im
‘{zm 7y X ) )

£ (ih(t —f )) ﬂevi;“u.)tl‘i(n-wx')*dk ’ (18)

2mm

where kis a wave number of a particle which relates to the

momenfumas p = ik . Substituting Eq.(18) into (16) we

obtain
e m o\ (e -))"?
’ 2mih(t’ — 1) 2mm
A, g
-—(" =)k -
L f e (e’{" M

LY
=if ¢ 5 sin(e)sin(ke)dk - (19)
ﬂ' o)

(x",r"

- ei(-—x'-x'}k)dk

In momentum-space representation, Eq. (19) becomes

(xrr’ rrr | x’,f)

7 sin¢2 x") sin(2 x')dp - (20)

Comparing Eq.(20) to Eq.{12) we get the momentum
eigenstates
1
W, {x")=——sin(£x
7 N 7h G (21)
» F: 1 s
w,(x)= \/E sin{%- x")

with possible continuous energy levels E(p) = - p*.

2m

This is the same as that derived from the Schrodinger

equation.
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The Semi-Harmonic Oscillator
The semi-harmonic oscillator or half-space
harmonic oscillator is a particle moving in one dimension

under the influence of the potential
) 0 for x<0
xX)=
L me’x*

Similarly to that of the infinite potential barrier,

(22)
for x>0.

after applying the image-point method to path integral of a

semi-harmonic oscillator we obtain the propagator

e )=[ﬂ—]lﬂx
@l dinsineT

i@ 2 3
exp| ————(x° +x; Ycos ol |x
p(Zhsina)T( 2+ %) )

=Imx X, imax, x,
e hsinaT e hsin o7
where T= bt To obtain the wave functions and energy
a

(Xysty

(23)

levels of a semi-harmonic oscillator we must expand the
right of (23) into a series as in the form of (11) by using
the formulas (Gradshteyn and Ryzhik, 1965)

isinwl =1 (1-e)

il

“2iwT ) (24)

coswl =+e™ (1+e

(+x)" ==ty P L33 +...,—l<x<1}, o)

(427" =1—x+x* -+ ~1<x<l
and

& =1+0+L0°+L6 +... . (26)
RESULTS, DICUSSION AND CONCLUSIONS
After applying (24)-(26) to (23) , the propagator

of a semi-harmonic oscillator becomes ,(27)
E,

(oty |2ty = S v, (W (x)e *27)

where
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p, (X} = AP ([fm), n=13,5,.., (28)

1 oo vz 1/2
An=[2n_1 '(—h] } n=135,., (29
n\ 7

and the possible energy levels

E, =(n+1/Qhw, n=135,... (30)

The solution of a semi-harmonic oscillator problem may
be solved by using Schrodinger equation. Therefore the
solution itself is not particularly important. The main
problem is whether or not the path integration can be
carried out for such a problem. The only path integrals
known to be solvable are those of Gaussian with an
unbounded demain. What was done in this paper was to
give the concept of image- point method for handling the
path integral of a semi-harmonic oscillator. The key
concept is that there are two classical paths., The first is
that of a particle going directly between the two points,
 while the second is that of a particle bounces off the wall
on it way from (X,.7,) to (X,,Z, ). From the corresponding
propagator, we can derive the eigenstates and energy

levels of a particle in this system.
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