“ UNANIIVING ”

The Production of Polyhydroxyalkanoates (PHAs)

from Renewable Feedstock Derived from Various Wastes
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The development of biodegradable plastic has been contributing significantly towards the country’s economy
and decrease environmental problem. Poly(3-hydroxybutyrate) [P(3-HB)] and other polyhydroxyalkanoates (PHAs)
have been drawing much attention in the past two decades. For the economical production of P(3-HB), various bacterial
strain and new fermentation strategies were developed for the production of P(3-HB) with high concentration and
production. However, the major barrier associated with the production of P(3-HB) is its high operation cost. To reduce
the cost, several processed for P(3-HB) production from inexpensive substrate were also investigated. Currently the
highest production of P(3-HB) was reported to a content of 81% of dry cell weight (DCW) from whey supplemented
with citric acid by recombinant Escherichia coli. Nevertheless, the production of P(3-HB) production in the range
of 7 — 80% of DCW with various wastes was alsa investigated. Utilization of waste as substrate was also developed not
only for the efficient production of P(3-HB) but also for novel PHAs. Nowadays 90% of polyhydroxyhexanoate
[P(HHx)] was produced by Wauterisa sp strain PZK cultivated under kraft cellulose mill effluent. With these entire
advances, wastes from various industries are very interesting sources for PHAs production. This paper aims at

understanding how waste from various sources may serve as a renewable feedstock for the biosynthesis of PHAs.

INTRODUCTION synthetic plastic such as that resistant to biodegradation

Since the 2000s, Plastic waste has become in the nature as well as many toxins produced during

a setious problem of contemporary life. Globally plastic  the production and elimination process. This latter
waste accumulates in the environment at the rate of  property, together with the fact that most common

about 30 million tons per year. Several disadvantages of  plastics are produced from fractions of non-renewable
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petroleum oil and plastic recycling offer limited
possibilities, causes a great concern [1, 2]. Problems of
global environment and solid waste management have
generated interest in the development of eco-friendly
biopolymer materials [3, 4, 5]. PHAs and blends of
these are attractive substitutes for conventional
petrochemical plastics since they have similar physical
propertics to commercial plastics, made from renewable
resources and degradation by environment process
within a period of one year. Moreover, PHAs are
suitable for applications in several arcas such as
pharmaceutical and medical application. PHAs are
naturally synthesized by a variety of different
organisms including bacteria, yeast and plants
using renewable resources [6, 7, 8]. PHAs are linear
aliphatic polyesters composed of 3-hydroxy fatty acid
meonomers, produced in the nature under the nutrient
restricted condition as a storage granules providing
food, energy and reducing power [5, 9], Nowadays,
about 150 monomers of hydroxyalkanoic acids (HAs)
have been identified as constituents of microbial
polyester. However, the simplest and the most well
known of the PHAs family is P(3-HB). It consists of only
one type of monomer, 3-hydroxybutyrate (3-HB)
[1, 10, 11].

The use of PHAS as substitutes for petroleumbased
plastic has been restricted due to the high
production cost of PHAs compared with conventional
polymers. To produce large amount of PHAs, research
and development for the PHAs production with high
concentration from inexpensive substrate are
emphasized [12, 13, 14]. Wastes and wastewater,
low value source from various industries, showed the
great potential supply of raw material to manufacture

bioplastics, a higher value product.

1. Polyhydroexyalkanoates (PHAs)

PHAs are a class of natural polyesters that
deposited intracellularly in the form of inclusion
bodies(“granules, "visibleasbrilliantglobules, 100-500 nm)
in the phase contrast microscope and may account
for up to 90% of DCW [135, 16]. They are one of the
most fascinating and largest groups of thermoplastic
polymers known. PHAs are accumulated as a carbon
and energy storage material (Figure 1) in various
microorganisms usually under the condition of
limiting nutritional elements such as nitrogen,
phosphorus, sulphate, oxygen, or magnesium in the
presence of excess carbon source [1, 12]. PHAs are
high-molar-mass polymers, usually in the range of
100 — 1,000 KDa [17], although P(3-HB) produced in
recombinant E. colf has been reported to have
ultra-high-molar—mass(Mn)of‘Z0,000KDa[l8].Molarmass
depends on the microbial species and culture conditions
such as pH and type and concentration of the carbon
source [19].

Depending on the length of their monomers,
three distinct groups of PHAs are extensively studied:
the short chain length (scl-PHAs) such as P(3HB) and
3~hydroxyvalerate P(3-HV}, the medium chain length
(mcl-PHAs) containing monomer length of 6 to 14
carbon atoms and long chain length (lcl-PHAs),
respectively. However, only scl-PHAs have properties
close to conventional plastics while the mcl-PHAs are
regarded as elastomers and rubbers. More than 100
different monomer units were found as constituents of
PHAs, produced by Gram-positives and Gram-negative
species [20]. The mechanical properties of PHAS is
similar to those of polyethylene or polypropylene,
with the additional advantage of being completely
biodegradable, biocompatible and produced from

renewable resources [11, 21].
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Figure 1 Chemical structure of polyhydroxyalkanaotes (PHAs).

n=1 R = hydrogen Poly(3-hydroxypropionate)

R = methyl Poly(3-hydroxybutyraie)

R = ethyl Poly(3-hydroxyvalerate)

R = propyl Poly(3-hydroxyhexanoaie)

R =pentyl Poly(3-hydroxyoctanoate}

R = nonyl Poly(3-hydroxydodecanoate)
n=2  R=hydrogen Poly(4-hydroxybutyrate)

R = methyl Poly(4-hydroxyvalerate)
n=3 R =hydrogen Poly(5-hydroxyvalerate)

R = methyl Poly(4-hydroxydodecancate)

Source: modified from [21].

2, Recent trends in the production of PHAs hydroxyhexanoate (HHx)] and Biocycle™ (homopolymer

Four commercial bands of PHAs are currently  of HB, copolymer of HB and HV). All of these polymers
available including Biopol™ (copolymer of hydroxy-  are produced by wild type strains such as Alcaligenes latus
butyrate (HB) and hydroxyvalerate (HV), Biomer™  (Biomer™) and Burkholderia sacchari (Biocycle™) in

(homopolymer of HB), Nodax™ [copolymer of HB and  pure cultures or by using genetically modified strains
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such as recombinant E. cofi (Biopol™) or recombinant
Wautersia eutropha (Nodax™) [22]. Although the
production cost of PHAs are still limited. The cost
difference between synthetic plastics and PHAs has
been the main obstacle for its replacement in market
[23]. Hence, there is a potential for widening the market
for PHAs, provided that their cost decreases. Nowadays
PHAs production is in the range of 10,000 — 50,000 tons
pet year. However, even the largest production capacity
quoted above is small when compared to the whole
plastics market, estimated at 150 million tons per year.
Table 1 shows market prices of PHAs compared to
conventional and petroleum-based polymer. The
data indicated PHAs cost is 1 - 3 folds higher than
synthetic polymer [24].

As a result, much of the literature has focused
on reducing the cost of production of PHAs. With this

global aim, different approaches have been adopted:

the used of various fermentation strategies [13, 14,25, 26],
development of more efficient recovery
processes [27, 28], use of recombinant DNA technology
and metabolic engineering [29, 30], production of PHAs
in transgenic plants [31], process integration with other
products [32] and use of inexpensive carbon sources as
raw materials [33, 34, 35]. The cost contribution of the
carbon source per kilogram of produced P(3HB) based
on the theoretical yields estimated indicated that
fermentation based on pure glucose, the substrate cost
amounts to €1.02/kg P(3HB), whereas for crude carbon
sources such as chesses whey the substrate contribution
lower to €0.17/kg P(HB). It becomes clear that, if based
on expensive substrates such as glucose, even the most
efficient processes will not enable PHAS to compete on
the basis of price with petroleum-based polymers [24].
Taking into consideration that PHAs content and

productivity are usually lower for bacteria grown

Table 1 Market price of bio-based polymers and conventional, petroleum-based polymers (December, 2009).

Polymer Producer/Company Market price
(€/kg)
P(3HB) Biomer (Germany) 12
P(3HB-co-3HV) Metabolix (USA) 10-12
Modified starch polymer Novamount (Ttaly) 2.5-3.0
Polylactic acid (FLA) Cargill Dow (USA) 22-34
Polypropylene (PP) 0.74
High-density polyethylene (HDPE}) 0.78
Low-density polyethylene (LDPE) 0.74
Polyvinyl chloride (PVC) 0.70
Polystyrene (PS) 0.70
Polyethyleneterphtalate (PET) 0.81

Source: [24, 36]
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in crude, inexpensive substrate [24, 27, the development
of efficient processes based on crude carbon sources,
such as agro-industrial by products and waste,

remains a challenge to be pursued.

3. The production of PHAs from various wastes

PHAs productivity, PHAs content of the biomass,
PHAs yield on the carbon used, cost of raw materials
and the recovery methods are the main problems
preventing the commercial application of PHAs [27].
Most importantly, as the process is scaled-up, the raw

materials contribute an increasing fraction of overall

Thaksin.J., Vol.14 (1) January - June 2011

manufacturing costs and these costs of raw materials
are dominated by the carbon source [27]. Therefore, the
economic feasibility of bulk PHAs production is
intrinsically coupled to developing efficient
biotechnological processes from inexpensive carbon
sources. Additionally, the use of waste products as
carbon sources presents the advantage of simultane-ously
enabling a decrease in disposal costs and the
production of value-added products. The production
of PHAs by different inexpensive carbon sources
using various microorganisms is summarized in

Table 2.

Table 2 Examples of PHAs production from various wastes

Type of wastes  Microorganisms Fermentation Type of PHAs  PHAs References
condition content (%)

Pea shell slurry  Bacillus cereus Shaken flask P(3HB) 41 [36]

Saccharified Rastonia eutropha NG P(3HB) 46 [37]

waste NCIMB 11599

Mollasses Bacillus sp. Shaken flask P(3HB) 7.92 [38]

Peach pulp 778

Malt waste Activated sludge Sequence batch ~ P(3HB-co-HV) 70 [39]
reactor

Hydrolyzed Osmophillic organism 42 L bioreactor P(3HB-co-HV) 49.6 [40]

whey

Beet molasses B. megaterium NG P(3HB) 32 [41]

Malt waste Activated sludge Fed-batch P(3HB) 6% [42]

Fermented R. eutropha TF 93 Batch P(3HB-co-HV} 40 [43}

organic waste

Whey Recombinant E. coli Fed-batch (2.5L) P(3HB) 80 [44]
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Table 2 (cont.)

Type of wastes  Microorganisms Fermentation Type of PHAs PHAs References
condition content (%)

Paper mill Activated sludge Batch P(3HB-co-HV) 48 [45]
wastepaper
Raw rice grain-  Activated sludge Shaken flask P(3HB) 42.3 [5]
based distillery
spentwash
Anaerobic Activated sludge Batch P(3HB) 58 [46]
wastewater
Kraft cellulose  Sphingopyxis chilensis ~ Shaken flask P(3HB) 80 [47]
mill effluent 837

Wauterisa sp. PZK P(HHx) 90
Acidified Alcaligenes eutrophus Fed-batch (2L) P(3HB-co-HV) 60 [48]
wastewater
Municipal Activated sludge Batch P(3HB) 21 [49]
wastewater
Municipal 31
wastewater +
acetate
Olive oil Pseudomonas putida NG PHAs 3.59 [50]
wastewater KT2442
Swine waste Azotobacter vinelandii NG P(3HB-co-HV) 34 [51]
liquor UWD
Alcoholic Actinobacillus sp NG P(3HB) 42 [52
distillery Ei-9
wastewater
Beet molasses B. cereus M5 Batch P(3HB) 73.8 [53]

(1% wiv)
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Table 2 (cont.)

Type of wastes  Microorganisms Fermentation Type of PHAs  PHAs References

condition content (%)

Beet molasses A. vinelandii UWD Fed-batch P(3HB) 38.5

(5% wiv)

Beet molasses 66

Beet molasses + P(3HB-co-HIV)  59-71

valerate

Beet molasses +  Recombinant Fed-batch P(3HB) 80

salis + trace E. coli

metals

Sugarcane P. fluorescens Baich P(3HB) 70 [21]

liquor

Sugarcane Bhurkolderia sp. and C.  Fed-baich P(3HB) 65-70

liquor necator

Soluble starch A. chroococcum Fed-batch P(3HB) 46

Soluble starch B. cereus Batch P(3HB) 48

Wheat C. necator Fed-batch P(3HB) 70

hydrolysate

Bagasse B. sacchari Batch P(3HB) 62

hydrolysate IPT101

Bagasse B. cepacia IPT048 Batch P(3HB) 53

hydrolysate

Bagasse C. necator Batch PHAs 65

hydrolysate

Xylose + Recombinant Batch P(3HB) 73.9

soybean E. coli
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Table 2 (cont.)

Type of wastes  Microorganisms Fermentation Type of PHAs  PHAs References
condition content (%)
Whey + citric Recombinant Batch P(3HB) 81.3
acid E. coli
Olive oil mill Recombinant Batch P(3HB-co- 76— 81 [24]
waste C. necator 3HHx)
Com oil waste
Palm oil waste
Soybean oil C. necator Fed-batch P(3HB) 72— T6
Recombinant P(3HB-co- T1-74
C. necator 3HHx)
Residual oil C. necator Batch P(3HB) 19.7
Fed-batch 413
P. oleovorans Batch P(3HB-co- 17.3
Fed-batch 3HHx-co-3HO- 389
co-3HD-co-
3HDD)
Tallow waste P. resinovorans Batch PHAs 15
Whey + P. hydrogenovora Fed-batch P(3HB} 12
casamino acids
Whey + Fed-batch P(3HB-co-HV) 12
casamino acids
+ valerate
Whéy + corn Recombinant Fed-batch P(3HB) 72.9
steep liquor E. coli
Wheat based C. necator Batch P(3HB) 60

biorefinery
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Table 2 (cont.)

Type of wastes  Microorganisms Fermentation Type of PHAs PHAs References

condition content (%)

Olive oil mill C. necator Batch P(3HB} 79-81

waste

Corn oil waste

Palm oil waste

NG" = Not Given

The production of PHAs from glycerol waste

As aforemention, several reports on the
production of PHAs are from cheap carbon sources
by wild-type and recombinant PHAs producer.
However, the PHAs concentration and PHAs content
obtained were considerably lower than those obtained
using purified carbon substrates [12].

Glycercl is a main by-product of biodiesel
production generated from the tranesterification process.
An annual production of biodiesel is approximately 150
million gallon per year; an amount of 50 million Kg of
crude glycerol is generated. However, glycerol which
obtain from biodiesel process is impure and of low
economic value. With the even-growing production of
biodiesel and by-product glycerol, it has been suggested
that the open market value of crude glycerol may be
eventually stabilize at low price of $0.05/lb, but the
cost to refine this crude glycerol will cost
approxi-mately $0.20/1b [36]. Although pure glycerol is an
important industrial feedstock with found in various
application such as food, drug, cosmelic and tobacco
industries. But, purification is cosily and often out
of the range of economical feasibility for small and

medium sized plants. The alternative uses for the

by-product glycerol from biodiesel will need to be
found.

Converting glycerol into value-added products
provides an alternative for glycerol disposal and for its
surplus problems. Though thermo-chemical processes,
glycerol can be converted into propylene glycol and
acetol. It can also serve as carbon source in fermentation
processes to produce various products such as 1.3
propanediol, lipid and pigment. Anaerobic fermentation
of glycerol by E. coli also generates a mixture of
products such as ethanol, succinate, acetate, lactate and
hydrogen [54]. Interesting the production of PHAs from
low cost glycerol was also reported [34, 55]. However,
only little information has been published. Besides
some data of the taxonomic description of the genus
Methylobacterium processes were patented for the
ptoduction of PHB by M. rhodesianum MB 126 and
R. eutropha DSM 11348 [56]. M. extorguens and
R. cutropha produced P(3HB) during cultivation on
a mineral medium containing glycerol [57].

PHAs production in waste glycerol and
commercial glycerol was investigated. The results
indicatied that maximum P(3HB) concentrations

achieved in the waste glycerol (30% DCW) were
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approximately the half of those obtained in commercial
carbon source (62% DCW). However, optimization of
the time point to impose nitrogen depletion to induce
PHAs accumulation in the waste glycerol cultivations
provided 50% P(3HB) content and resulted in a 30%
increase in productivity (1.1 g/L/h), as compared to the
productivity (0.84 g/L/h) that had been initially obtained
[56]. A wide type highly osmophilic microorganism
grown on another glycerol-rich waste from biodiesel
industry, supplemented with yeast extract and peptone
produced a PHAs concentration of 16.2 g/L. When the
expensive nitrogen sources (yeast extract and peptone)
were replaced by hydrolyzed meat-and-bone meal
{(MBM), PHASs production decreased to 5.9 g/L.. Despite
this, an interesting finding was that the strain
investigated was able to produce a P(3HB-co-HV)
containing 8 — 10% (w/w) of 3HV unit directly from the
glycerol tich medium, without any need for precursors
such as proionic or valeric acid [34]. Jatropha biodiesel
byproduct was also studied as carbon source for PHAs
production by B. somorensis and Halomonas
hydrothermalis. Both bacteria utilized
Jatropha biodiesel byproduct containing crude
glycerol for growih and PHB biosynthesis and
accumulated PHB up to 71.8 and 78%, respectively [58].

4, Conclusion and future outlook

Biodegradable polymers and especially PHAs
have rapidly gained interest both in research and
industry. Although their manufacturing costs today
are stili too high to compete with conventional and
petroleum-based polymers, advance in biotechnological
processes using inexpensive carbon sources combined
with the long-term increasing trend of oil prices will

certainly improve PHAs competitiveness and make

a broad use of these biopelymers possible in the future, The
production of PHAs from cheap raw material including
a variety of waste and by products has been explored
using bacteria. However, the potential for PHAs
production seem to be limited by the consistency and
reliability of the raw material. Therefore, storage issue
and the correct balance of the ingredients will need to
be carefully scrutinized [1, 59]. The chance to increase
PHAs yield and productivity as well as PHAs variety
and ease of polymer recovery will depend on the
successful discovery of cheap raw materials which can
offer microorganism to produce high PHAs with
g variety of PHAs monomer. This will further decrease

the limited of PHASs application.
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